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Analysis of Tanks-in-Series Model with Backflow 
for Free-Radical Polymerization 

J. S. SHASTRY, L. T. FAN, and L. E. ERICKSON, Department of 
Chemical Engineering, Kansas State University, Manhattan, Kansas 66606 

synopsis 
Free-radical polymerization in a flow reactor represented by the tanks-in-series model 

with backflow was considered. Conversions and molecular weight distributions were 
computed as functions of the backflow parameter, and the results were compared with 
the conversion and molecular weight distribution from a CSTR and those from a plug- 
flow reactor. Backflow w&s found to be undesirable for the polymerization mechanism 
under investigation. Values of the degree of segregation for the tanks-in-series model 
were calculated by using Zwietering’s approach as a function of backflow. 

INTRODUCTION 
The use of continuous-flow reactors for commercial production of poly- 

mers and for kinetic study of polymerization reactions has increased con- 
siderably in the last decade. Two types of basic reactors, the tubular 
reactor and the stirred-tank reactor (or any combination thereof), have 
been employed for this purpose. The properties of the polymers produced 
from these reactor systems are greatly influenced by the type of reactors 
used and the reactor configuration. For example, the molecular weight 
distributions in these systems vary considerably and are also strongly 
dependent on the mechanism of polymerization reaction (lifetime of free 
radicals). In modeling and simulating flow polymerization reactors12-”J 
the tubular reactor has been considered almost always as a plug-flow reactor 
and the stirred-tank reactor, as a completely mixed reactor. In reality, 
however, the flow behavior in a polymerization reactor usually does not 
follow either of these two ideal flow patterns. The flow behavior can often 
be approximated by using a tanks-in-series model with backflow. This 
model includes the two extreme cases of plug flow and complete mixing as 
well as a number of cases with intermediate amounts of mixing. It should 
be pointed out that the tanks-in-series with backflow model does not re- 
strict the design of the polymerization reactor. For example, a tubular 
reactor with axial mixing can be modeled by a tanks-in-series with back- 
flow model. 

The purpose of this paper is to present the model of a flow polymerization 
reactor which was derived based on the assumption that the flow pattern 
could be represented by stirred tanks-in-series with backflow model. The 
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simulated performance data under various conditions including residence 
time distributions, conversions, and molecular weight distributions are 
also presented and analyzed. Extreme conditions, which result in limit- 
ing conditions of the model, namely, the CSTR and the plug-flow model 
are also examined. 

FLOW MODEL 
Modeling of a flow chemical reactor consists of three different aspects: 

(i) modeling the kinetics of the chemical reactions to obtain a batch- 
kinetics expression, (ii) modeling the flow behavior or the macromixing 
condition, and (iii) modeling the micromixing condition. The flow modcl 
investigated in this work is shown in Figure 1. I n  this figure, qo  is the 
overall forward flow rate and q' is the backflow rate (flow from tank i 
to  tank i - 1: 2 < i < N ) .  This model assumes that all the tanks have 
the same volume; extension to  cases with unequal volumes is straight- 
forward. The backflow parameter B is defined as 

(1) 

The macromixing effect is accounted for by the number of tanks in the 
model and the extent of backflow. 

Macromixing in reactor systems can be described by the residence time 
distribution (RTD) of the fluid elements in the reactor. Shinnar and 
Noar" developed a general method for calculating residence time dis- 
tributions for systems with internal reflux. They examined the N tanks- 
in-series model with backflow and computed RTDs for some special cases. 
In  the present work, expressions for RTDs for the system in Figure 1 
were derived by considering an impulse input of a tracer into the first 
reactor (Appendix I). 

q' B = -. 
Po 

Fig. 1. Schematic representation of the N-tank model with backflow. 

When there are three tanks of equal volume in the model, the age dis- 
tributions are 

e-a9 e-b9 

{ ( b  - a)(c - a> + (a  - b) (c  - b)  
E3(e) = 27(1 + B)2t 

-ce + (a - c ) (b  - c )  }- (2) 
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Raldsnea h 
Fig. 2. Effect of backflow on the exit age distribution, E&). 

and 

(b  - U ) ( C  - U) 
+ 

in which E,(fl) = exit age distribution in tank i; e = dimensionless time, 
t/i; Z = mean residence time in the reactor system; a = 3(1 + B ) ;  b = 
[3(2 + 3B) + 4 9 ( 2  + 3B)z - 36(1 + B)]/2; c = [3(2 + 3B) - 
d 9 ( 2  + 3B)2 - 36(1 + B)]/2; a1 = b + c; and QI = bc + 9B + 9B2. 
These RTD values are shown in Figure 2 and are compared with RTD when 
B = 0. It can be seen that all three roots of the cubic a, b, and c coincide 
when B = 0, and this represents the case when there is no backflow in the 
system. Another extreme case arises when B is infinitely large, i.e., B = 
OD. I n  this case, the model reduces to one CSTR, as there is an infinite 
exchange of matter between the tanks in the model. 

For nonlinear reactions, macromixing alone is not enough to  determine 
the conversion and MWD in a flow reactor. Under these situations, the 
micromixing component, which specifies the concentration history ex- 
perienced by the molecules during their passage through the system, must 
be considered. Often the concept of degree of segregation ( J )  is used to  
quantify the micromixing in a reactor system. This concept was first 
introduced be Zwieteringlz and involves calculation of J by using the re- 
lationship 

var a1 
var OL 

J = -  (5) 
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TABLE I 
Effect of Backflow and Number of Tanks-in-Series on Degree of 

Segregation Under the State of Sequential Mixedness 

Backflow parameter No. of 
tanks in 
model 0 5 10 15 20 m 

~ ~~ - - - - 1 0.0 
2 0.1429 0.1129 0.0912 0.0591 0.0251 0 .0  
3 0.250 0.1941 0.1412 0.1131 0.0781 0.0 
5 0.400 0.3018 0.2165 0.1510 0.1104 0.0 

10 0.600 0.5100 0.4210 0.3000 0.2510 0.0 
m 1.000 1 .oo 1.00 1 .oo 1 .oo - 

in which J = thc degrec of segregation; a = age of a fluid clement; and 
an = mean age of a molecule within a point. 

It was shown by Zwietering'* that  for a maximum mixedness stirred- 
tank reactor, the value of J is zero, and for a completely segregated reac- 
tor, J is unity. (It is interesting to  note that J is equal to unity for a com- 
pletely segregated CSTR and also for a completely segregated plug-flow 
reactor.) Various cases of the model considered in this investigation lie 
between these two extreme cases, and thcrcfore the values of J calculated 
for these cases must be between zero and 1. The calculated J values for 
all cases of the model are presented in Table I (see Appendix 11). The 
results given in this paper were obtained on thc assumption that the whole 
system is in the state of sequential mixedness, that is, each tank is sep- 

I. 

Vno. of tanks in ihe model 
Fig. 3. Effect of backflow on the degree of segregation for N tanks-in-seriesmodel. 
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arately in the state of maximum mixedness, and the material from tank 
i is fed to tank i + 1 .  Extension to other cases where some or all the tanks 
are in the state of segregation is not straightforward and remains unsolved. 
It can be seen from Table I that if the N CSTRs-in-series model is used 
to generate an RTD between the RTD of the CSTR and that of the plug- 
flow reactor, the farther the RTD of the model deviates from the RTD of 
the CSTR, the farther the J under the state of sequential mixedness 
deviates positively from zero. It increases up to 1 as the RTD of the 
model approaches the RTD of the plug-flow reactor. For a fixed number 
of tanks, an increase in backflow makes the RTD of the model approach 
the RTD of the CSTR, and hence J decreases as backflow is increased 
and reaches a value of zero for infinite backflow. For the same backflow 
parameter (B) ,  an increase in the number of tanks in the model increases 
the degree of segregation. The effect of backflow on the degree of segre- 
gation is presented in Figure 3. 

POLYMERIZATION MODEL 

The polymerization mechanism considered in this investigation con- 
sists of three steps-initiation, propagation, and termination: 

p1 initiation 
kv 

P, + MI Pj+l propagation 

Pi + MI --+ M,+1 termination 
ki 

here M1 represents the monomer, P, the active polymer of chain length j ,  
and M ,  the dead polymer of chain length j. 

Isothermal conditions were assumed for the flow reactor under con- 
sideration; this means that the rate constants in all the tanks in series 
were identical. Material balance equations were derived for monomer 
concentration, active polymer concentration, dead polymer concentration, 
and total active polymer concentration. 

In  what follows, the first index within the parenthesis refers to chain 
length while the second index refers to the number of the tanks: The 
monomer material balances for the flow reactor are 

M(1,0)a,, + (M(1,2)  - M(1,1)J% - a , M ( 1 , 1 )  

- M ( 1 , l )  k t n  + 2 [(k, + kt)P(j,l)l} = 0 

aTi(M(l , i  - 1) - M ( W f  - M ( W  + t n  + 2 [@, + kdP(j,i)I) 

tank i ( 1  < i < N )  

a, ,M(l,N - 1 )  - a w ” 1 , N )  - %Jf(l,N) 

tank 1 (6) 
j=l 

j =  1 

+ a&V(l,i + 1 )  - M(1,i)) = 0 (7) 

- M ( I , N )  + i n  + 5 [(k, + ~JPO.,N)I} = 0 t ankN (8) 
j =  1 
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in which MG,i) = concentration of dead polymer of chain length j in 
reactor, i, j 2 2; M(1,i) = concentration of monomer in reactor; P(j,i) = 
concentration of  active polymer of chain length j in reactor; k,,,k,, and 
k ,  = rate constants; afi  = qo/Vi; abi = q'/Vt; aTi = ( q o  + q') /Vt;  and 
V ,  = volume of the ith reactor. 

The relation between the total active polymer concentration and the 
concentration of individual polymers 

is necessary to solve the system of eqs. (6)  through (17). 
balances for the total polymer are 

The material 

- ~ I P T ( ~ )  M(l , l ) {k in  - kPT(1)J abI(PT(2) 
- P,(I)] = o tank 1 (19) 
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( Y T i ( P T ( i  - 1) - PT(i)f + M(l,i){k*n - kfPT(41 

(YTNPT(N - 1) - (YONPT(N) - afNPT(N) 

+ a6,(pT(i + 1) - pT(i)J = o tank i(1 < i < N )  (20) 

+ M ( l , N ) ( k , ,  - k,PT(N)f  = 0 tankN (21) 

Equations (6) through (21) completely describe the polymerization process 
in the flow reactor represented by the N tanks-in-series with backilow 
model. 

SIMULATION 

Steady-state simulation of the given reactor system was carried out by 
simultaneously solving eqs. (6) through (21). The following rate con- 
stants and flow parameters employed by Liu and Amundson16 were used: 

k , ,  = 0.025 hr-' 
k ,  = 60.0 l./g mole hr 
k f  = 1.0 l./g mole hr 

Mo = 1.0 g mole/l. 
total volume = 3.6 liters 
p = 1.0 IJhr 

Simulation results were obtained for different backflow rates and different 
numbers of tanks in the series. An iterative solution procedure was em- 
ployed to  solve the set of nonlinear simultaneous algebraic equations. A 
solution waa assumed in the solution space (Fig. 4) for P(j,i) and M(j , i ) ;  
j = 1,2, . . . , 150, and i = 2, . . . , N .  This assumed solution was improved 
upon by iteration using eqs. (6) through (21) till a desired accuracy was 
obtained. The following stopping criteria were used for terminating the 
iterative procedure: 

(22) 

(23) 

lM(l,i)k+I - M(1,i)kI 5 €1 

IPTk++'(i) - P T k ( i ) l  I €2 

Equations (22) and (23) were used to  determine the stopping criteria, 
whereas eq. (24) was used for checking the accuracy of the solution by 
examining the amount of polymer formed and the amount of monomer 
consumed. The molecular weight distributions and corresponding mo- 
ments were calculated using the relationships 



10 

- 

j ,  chain h g t h  

Fig. 4. Solution spaces for M(j, i )  and P(j , i ) .  

M(1.i) M(j,i) M(150, i) 

M(j,l) 

in which W (  j , i )  = weight fraction of a polymer chain length j in reactor i; 
M(1,O) = feed monomer to  tank 1; p ( i )  = mean of molecular weight dis- 
tribution in reactor i; and a2(i)  = variance of molecular weight distribution 
in reactor i. 

RESULTS AND DISCUSSION 

Computational 

Results computed on an IBM 360/50 model computer are presented in 
this section. About 3-5 min of computer time were required for one set 
of calculations for the model without backflow, but the time required for 
computation increased with the introduction of backflow. I n  addition, a 
a larger number of iterations were required to  obtain the desired accuracy 
for the cases with backflow than for the case without backflow. 
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No Backflow 
Four cases of the tanks-in-series model consisting of 1, 2, 3, and 5 tanks 

in series were considered, and the results obtained were compared with 
those of the ideal plug-flow reactor model (infinite number of tanks with no 
backflow). 

Results for the case without backflow are presented in Table 11. It is 
well known that as the number of tanks increases, the flow pattern of the 

TABLE I1 
Results of Computations for Zero Backflow 

Exit mol wt distribution 
No. of tanks Exit monomer 

in model concn. Mean Variance Peak at 

1 0.2399 44.89 610.84 28 
2 0.1438 44.19 589.97 26 
3 0.0633 38.73 549 :98 20 
5 0.0174 34.60 541.66 13 
03 0.0151 30.32 513.91 11 

tanks-in-series model approaches that of the plug-flow reactor. It is 
evident from the table that  as the number of tanks (N) in the model in- 
creases, the conversion increases and the monomer concentration falls. 
The molecular weight distribution (MWD) becomes narrower as N is 
increased, and this reduces the variance of MWD. The mean of thc 
MWD and the mode both decrease as N increases as shown in Table I1 
and Figure 5. It can be seen that  the results for the tanks-in-series model 
approach those of the plug-flow model as N approaches infinity. It 
should be noted here that the conversion in the first tank is reduced as 
the number of tanks are increased because the holding time in the first tank 
is reduced. 

Molecular weight distributions of the product polymer obtained from 
models with 2,3,  and 5 tanks are presented in Figures 6 through 8. Com- 
parison of these figures shows that inclusion of additional tanks in the 
model narrows the MWD and reduces the variance, and a lower variance 
makes the product more desirable. Exit molecular weight distributions 
from the three cases are compared with each other and with the extreme 
cases (plug flow and CSTR) in Figure 5. It can be concluded that for the 
polymerization mechanism under consideration, the plugflow reactor 
(infinite number of tanks in the model) gives the maximum conversion 
and the narrowest MWD. 

Backflow 
If backflow is introduced, the model tends to  become more homo- 

geneous, and at a very high backflow, the system behavior approaches 
that  of the CSTR (for a finite number of tanks). Conversions obtained 
fort he three cases (2, 3, and 5 tanks) of the tanks-in-series model and im- 
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dogma ot p o ~ z a t i o n  
Fig. 5. Comparison of exit molecular weight distribution for the four models. 

portant MWD parameters are presented in. Tables I11 through V. An 
increase in backflow reduces the overall conversion in all three cases, and 
if the backflow is increased infinitely, conversion for each of the three cases 
approaches the conversion obtained from the one-tank model, which is the 
lower limit for conversion for the mechanism under consideration. Exit 
molecular weight distributions of the product polymer from the three 
cases are shown in Figures 9 through 11. It is evident that as backflow 
is increased, the variance of the MWD increases making the polymer leas 
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Fig. 6. Molecular weight distribution in the Ztank model for freeradical polymerization. 

desirable. Increase in backflow, however, shifts the peak to the left and 
thus decreases the mean of the MWD. For the mechanisms under in- 
vestigation, an increase in backflow yields a wider MWD; and thus, back- 
flow is not desirable. 

Modified Mechanism 

It has been shown that an infinite number of tanks without backflow 
(plug flow without dispersion) gives the maximum conversion and the 
narrowest MWD. However, if the termination mechanism is modified to 
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20 40 60 80 100 w 

dw- d p o l y m r i ~  
Fig. 7. Molecular weight distribution in the 3-tank model freeradical polymerization. 

TABLE I11 
Effect of Backflow on Conversion and Molecular Weight 

Distribution (MWD) for the Two-Tank Model 

Back- 
flow 
pa- concentration Mean Variance Peak 

ram- 
eter Tank 1 Tank 2 1 

MWD 
Monomer 

2 1 2 1 2  

0 0.4083 0.1438 42.89 44.19 592.78 589.97 26 26 
10 0.2613 0.2279 44.79 44.80 611.23 611.15 28 28 
20 0.2515 0.2338 44.86 44.80 612.01 611.92 28 28 
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fiw-tank model 
no backflow 

Fig. 8. Molecular weight distribution in the Stank model for free-radical polymerization. 

the one-tanlc model would yield the narrowest distribution and backflow 
would be more desirable. From the conversion standpoint, the plug-flow 
reactor would be superior to the CSTR for this modified mechanism. 

Comparison with “Dispersion” Model 

It should be noted that a correspondence exists between the tanks-in- 
series model and the “axial dispersion” model often used to model non- 
ideal flow behavior. l6  Elementary processes visualized for these models 
are similar in that fluid can move upstream by both dispersion and by 
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Fig. 9. Effect of the backflow parameter on the molecular weight distribution for the 
2-tank model. 

backflow. 
the limitations of the comparison are pointed out. 

of a reacting species in tank n may be written m 

A comparison is presented here between the two models and 

Examine the N tanks-in-series model; the unsteady concentration (C) 

or 
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20 40 00 do 100 190 

mmJ of Polvnmlto~ 
Fig. 10. Effect of the backflow parameter on the molecular weight distribution for the 

3-tank model. 

The material balance for the dispersion model is 

in which D, = axial dispersion coefficient and U = linear velocity. 
By means of the Taylor series expansion, the dispersion model equation 
can be transformed into a finite difference form as follows: 
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Fig. 11. Effect of the backflow parameter on the molecular weight distribution for the 
5-tank model. 

or 

Comparing eqs. (28a) and (30a), the approximate equivalence of the models 
can be found to be 
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And if Az = L / N ,  the equivalence becomes 

It is evident that this equivalence is not valid for either very low values 
of N or very low values of B. As N + 1, D ,  of eq. (32) approaches a finite 
value; however, D,  should approach infinity as N - 1 because this rep- 
resents the one CSTR model. For low values of B,  the model reduces 
to  the N tanks-in-series without backflow, and D, should not vanish if 
B - 0 as predicted by eq. (32). 

Meaningful results can be obtained from this equivalence for infinitely 
large N or B. As N + m (if B is finite), D,  tends to  zero; and, hence, 
NPe (= UL/D,) becomes infinitely large. This corresponds to the plug- 
flow model. On the other hand, if B - m (for a finite N ) ,  D, - 03 and 
the model approaches the one-tank model. For B and N simultaneously 
tending to  infinity, D ,  is indeterminate according to eq. (32). 

Similarly, the following approximate equivalence exists between the 
tanks-in-series model without backflow and the dispersion modelIs: 

L2qo D A -  

' -  NV' (33) 

Again, this equivalence does not hold good for very low values of N .  
As N - 1, there is only one tank in the model, and D,  should approach 
infinity; but according to eq. (33), D, approaches a finite value. These 
approximate equivalences for both the models (tanks-in-series with back- 
flow and tanks-in-series model without backflow) are summarized in Table 
VI . 

TABLE VI 
Comparison of Dispersion Model with Tanks-in-Series Model 

With and Without Backtlow 

Number of Backflow Dispersion Peclet Model 
tanks parameter coefficient number approaches 

N +  m no backtlow D. -c 0 N p . 4  plug flow 
N - c l  no backflow D, + finite Nps -* finite - 
N - .  m B finite D , - t  0 N P ~ +  m plug flow 
N finite B-* D, -+ 0 N P .  -t 0 CSTR 
N - .  m B - r  m 

N - t l  B - t O  
- - - 
- - - 

Comparison with Tubular Reactors with Laminar Flow 
Denbigh'? has investigated the residence time distributions in a tubular 

reactor with laminar flow and has shown that the exit age distribution is 
given by 
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in which t o  = residence time (time of passage) of the fluid element at the 
tube axis and t = residence time for any radial position r. Exit age dis- 
tributions and degree of segregation ( J )  can be calculated from eq. (34) 
and compared with age distributions and J from the tanks-in-series model 
with backflow. From this comparison, values of N (number of tanks) 
and B (backflow parameter) for the tanks-in-series model with backflow can 
be determined that would approximate the tubular reactor with laminar 
flow. 

Applicability of Results 

The tanks-in-series with backflow model and the procedures developed 
here can be used to  investigate the effect of mixing on the conversion and 
molecular weight distribution of polymerization reactors. The optimum 
mixing pattern as determined from the model study may be transformed 
into an optimum tubular reactor design, for example, by proper use of the 
equivalence between the dispersion model and the tanks-in-series with 
backflow model. The optimum values at the mixing parameters fix the 
geometry of the tubular reactor. 

CONCLUSIONS 

Material balance equations for the tank-in-series model were derived 
and solved by an iterative method. The results were compared with the 
extreme cases of the plug flow and CSTR models. Molecular weight dis- 
tributions were calculated, and i t  was found that bacldlow is not desirable 
from the MWD standpoint for the mechanism investigated. 

The tanks-in-series with backflow model can be used to  model a wide 
variety of polymerization reactors. Axial dispersion in tubular reactors 
can be modeled using this model. When the flow parameters N and B are 
large, a meaningful equivalence between the tanks-in-series with backflow 
model and the dispersion model in finite difference form exists. 

APPENDIX I 

Derivation of Eqs. (2), (3), and (4) 
Consider the system shown in Figure 1 with N = 3. Let an impulse input of a tracer 

be added to tank 1. The unsteady-state material balance for the tracer concentration 
(C) is 

dC1 
v1 + ( q o  + q’IC1 = POCO + P‘C2 (1-1) 

+ (qo + q‘)C2 + q‘C2 = (Po + P ’ F 1  + P ‘ G  (1-2) 
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in which Vi = volume of the tank i, and Ci = concentration of the tracer in tank i. 
If all the t.anks are of the same volume (Vi = V/3), these equations can be rewritten 
after taking the Laplace transform as follows: 

in which CO, CI, ZZ, and c3 are Laplace transforms of CO, CI, CZ, and C3, respectively. 
Solving eqs. (1-4) through (1-6) for Ell CZ, and c3, the fo!lowing relations can be obtained: 

27(1 + B)'Eo c = (1-7) 
{S + 3(1 + B ) }  {S2 + 3S(2 + 3B) + 9(1 + B ) }  

cz = 9(1 + B)CO 
Sz + 3S(2 + 3B) + 9(1 + B )  

and 
9(1 + B)CB 

co + S2 + 3S(2 + 3B) + 9(1 + B) .  

( ! + 1 + B )  
tl = 

Taking inverse Laplace transforms, expressions for RTD as presented in the text are 
obtained. 

Appendix I1 

Calculation of J 
J can be calculated if the RTD and state of micromixing are k n o ~ n . ~ ~ ~ ~ ~  Consider 

the three tanks-in-series model without backflow and with RTD given by 

(11-1) 

It has been shown that var (I and var aP required to calculate J ,  eq. (5), can be computed 
by - -  

t 3  t 2  v a r a  = - -- 
31 4t2 

(11-2) 

var ( I p  = var (I - var a within the points (11-3) 
and 

var (I within the points = (var ap)t + (var a , ) ~  + (var a P ) 3 .  (11-4) 

Now, 

(11-5) 

and 

(11-6) 



TANKS-IN-SERIES MODEL 1359 

Substituting these values for 3 and ,? in eq. (11-2), 

var Q = - 22. (11-7) 8 
27 

Calculation of (var ( Y ~ ) ~  

aP1 is the mean age within the points in tank 1. This can be calculated by noting that 

3 
t (11-8) ~ ( t )  = 1 1 ( t )  = - e-3t/i 

in which I l ( t )  = internal age distribution of the fluid elements. Now for the first tank, 

(11-9) 

and 

V 

Along the same lines for tanks 2 and 3, 

(11-11) 

(11-13) 

and 

V 

From eqs. (11-2), (3), (4), (lo), (12), and (14), 
var aP 2/27 
var Q 8/27 

J = - - -  - = 0.25. 

By using the appropriate RTD, J values for this and other cases of the tank-in-series 
model can be computed. 

Nomenclature 
backflow parameter 
concentration of the reacting species in tank n, g moles/l. 
axial dispersion coefficient, an2/sec 
exit age distribution from tank i 
degree of segregation 
monomer concentration in tank i, g moles/l. 
Concentration of dead polymer of chain length j in tank i, 

number of tanks in the series 
concentration of active polymer of chain length j in tank i, 

total active polymer concentration, g moles/l. 

g moles/l. 

g moles/l. 
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linear velocity, cm/sec 
volume of the tank, liters 
weight fraction of polymer with chain length j in tank i 
constants defined for eq. (4) 
initiation rate constant., hr-I 
propagation rate constant, l./g mole hr  
termination rate constant, I./g mole hr  
influent flow rate to  reactor system, l./hr 
backflow rate, l./hr 
reaction term, g mole/l. hr 
time, hr 

t mean residence time for the system 

2 

& 

f f P  

distance along the tubular reactor, cm 
age of a fluid element, hr 
mean age of a molecular within a point, hr  

vt 

_ -  - influent flow space velocity, hr-I 
vt 

_ -  ” - backflow space velocity, hr-‘ 
a b i  

ff l f  

Qo + QI 

v, f f b i  -k f f f f  = - f f T f  
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